CyDNA: Synthesis and Replication of Highly Cy-Dye Substituted DNA by an Evolved Polymerase
نویسندگان
چکیده
DNA not only transmits genetic information but can also serve as a versatile supramolecular scaffold. Here we describe a strategy for the synthesis and replication of DNA displaying hundreds of substituents using directed evolution of polymerase function by short-patch compartmentalized self-replication (spCSR) and the widely used fluorescent dye labeled deoxinucleotide triphosphates Cy3-dCTP and Cy5-dCTP as substrates. In just two rounds of spCSR selection, we have isolated a polymerase that allows the PCR amplification of double stranded DNA fragments up to 1kb, in which all dC bases are substituted by its fluorescent dye-labeled equivalent Cy3- or Cy5-dC. The resulting "CyDNA" displays hundreds of aromatic heterocycles on the outside of the DNA helix and is brightly colored and highly fluorescent. CyDNA also exhibits significantly altered physicochemical properties compared to standard B-form DNA, including loss of silica and intercalating dye binding, resistance to cleavage by some endonucleases, an up to 40% increased apparent diameter as judged by atomic force microscopy and organic phase partitioning during phenol extraction. CyDNA also displays very bright fluorescence enabling significant signal gains in microarray and microfluidic applications. CyDNA represents a step toward a long-term goal of the encoded synthesis of DNA-based polymers of programmable and evolvable sequence and properties.
منابع مشابه
Structures of an Apo and a Binary Complex of an Evolved Archeal B Family DNA Polymerase Capable of Synthesising Highly Cy-Dye Labelled DNA
Thermophilic DNA polymerases of the polB family are of great importance in biotechnological applications including high-fidelity PCR. Of particular interest is the relative promiscuity of engineered versions of the exo- form of polymerases from the Thermo- and Pyrococcales families towards non-canonical substrates, which enables key advances in Next-generation sequencing. Despite this there is ...
متن کاملReversible Fluorescence Photoswitching in DNA
We describe the engineering of reversible fluorescence photoswitching in DNA with high-density substitution, and its applications in advanced fluorescence microscopy methods. High-density labeling of DNA with cyanine dyes can be achieved by polymerase chain reaction using a modified DNA polymerase that has been evolved to efficiently incorporate Cy3- and Cy5-labeled cytosine base analogues into...
متن کاملOne-Pot solvent-free synthesis of Highly Substituted Imidazoles catalyzed by zeolite
A series of tri- and tetra- substituted imidazoles were synthesized from benzyl, aldehyde and ammonium acetate in the presence of zeolite as an ecofriendly reusable catalyst under microwave irradiation in the absence of solvent. The yields are high to excellent and the use of microwave irradiation reduces reaction times to few minute.
متن کاملThe human papillomavirus DNA helicase E1 binds, stimulates, and confers processivity to cellular DNA polymerase epsilon
The papillomavirus (PV) helicase protein E1 recruits components of the cellular DNA replication machinery to the PV replication fork, such as Replication Protein A (RPA), DNA polymerase α-primase (pol α) and topoisomerase I (topo I). Here we show that E1 binds to DNA polymerase ϵ (pol ϵ) and dramatically stimulates the DNA synthesis activity of pol ϵ. This stimulation of pol ϵ by E1 is highly s...
متن کاملDNA REPLICATION AND SYNTHESIS OF DNABINDING PROTEINS IN THE CHLOROPLASTS OF A CALLUS CULTURE
Continuous labelling of callus with H-thymidine results in intermittent peaks of H-DNA per chloroplast, showing synchrony of division. The increase in H-DNA could be due to several replication rounds, and the drop to successive plastid divisions without intervening DNA synthesis. The level of DNA-binding proteins in the chloroplast parallels the peaks of plastidal DNA synthesis; such pro...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
دوره 132 شماره
صفحات -
تاریخ انتشار 2010